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Abstract. In this article, we consider some metric questions on Manifolds defined by the

system of equations. We obtain estimates in terms of products of singular numbers of some

matrices defined by taking all partial derivatives of entries of a given matrix of the same order.
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1. Introduction

Many problems of Analysis and Applied Mathematics lead to the investigations of some metric

questions in differentiable manifolds [1, 3, 10]. Often these Manifolds are given by a system of

equations in formulation of which involve differentiable functions. Such systems of equations

arose in the question on the convergence exponent of the special integral of Terry’s problem ([2,

5-9]). In this paper we estimate areas of some surfaces defined by the system of equations. Such

a problem arises when one considers the question on estimations of oscillatory integrals ([2, 3,

5-9]).

2. Auxiliary lemmas

To prove our results we will use some auxiliary statements. These statements are considered

in the lemmas below.

Lemma 2.1. Let in a bounded Jordan domain Ω of n-dimensional space Rn some continuous

function f(x̄) = f(x1, ..., xn) and continuously-differentiable functions fj(x̄) = fj(x1, ..., xn) be

given, with j = 1, ..., r, r < n, such that the Jacobi Matrix

∂(f1, ..., fr)

∂(x1, ..., xn)
,

has everywhere in Ω a maximal rank. Let, further ξ̄0 = (ξ01 , ..., ξ
0
r ) be an inner point for the

image of a map x̄ 7→ (f1, ..., fr) and x̄0 is a point of the domain Ω such that

f1(x̄0) = ξ01 , ..., fr(x̄0) = ξ0r .
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Then, everywhere in a neighborhood of the point ξ̄0 the following equality

∂r

∂ξ1 · · · ∂ξr

∫
Ω(ξ̄)

f(x̄)dx̄ =

∫
M(ξ̄)

f(x̄)
ds√
G
,

holds, where Ω(ξ̄) is a subdomain of Ω defined by the system of inequalities fj(x̄) ≤ ξj, M(ξ̄) is

a surface defined by the system of equations fj(x̄) = ξj(j = 1, ..., r), and G is Gram determinant

of gradients of the functions fj(x̄), i. e. G = |(∇fi,∇fi)| (see [12, p.92]); at the right hand side

the surface integral stands (see [4]).

Consequence 2.1. Let the conditions of the lemma 2.1 be satisfied. Then, we have∫
Ω

f(x̄)dx̄ =

M1∫
m1

· · ·
Mr∫

mr

du1 · · · dur
∫
M

f(x̄)
ds√
G
,

where mj and Mj, correspondingly, minimal and maximal values of the functions fj(x̄), mj ≤
fj(x̄) ≤ Mj. M = M(ū) is a surface in Ω defined by the system of equations, fj = uj , j = 1, ..., r,

and G is a Gram determinant of the functions defined M ].

Lemma 2.2. Let, under conditions of the lemma 1, the equalities ξ01 = ... = ξ0r = 0 be

satisfied and the surface M be defined by the system of equations

f1(x1, ..., xn) = 0,

· · ·

fr(x1, ..., xn) = 0,

moreover the functions fj(x̄) are continuously differentiable in some domain Ω0, including the

domain Ω. Let G = G(x̄) be a Gram determinant of gradients of the functions fj(x̄) distinct

from zero in Ω. Let, further, transformation of coordinates x̄ = x̄(ξ̄) be one to one mapping of

some domain Ω′ to Ω with a non-singular Jacobi matrix

Q = Q(ξ̄) =

(
∂xi
∂ξj

)
1≤i,j≤n

,

having continuous in Ω entries. Then, for any continuous function f(x̄) in Ω we have∫
M

f(x̄)
ds√
G

=

∫
M ′

|detQ| f(x̄(ξ̄)) dσ√
G′

, G′ = det(JQ · tQtJ),

where M ′ is a pre-image of the surface M in this transformation dσ is a surface element in

coordinates ξ̄, J is a Jacobi matrix of the system of functions fj(x̄):

J =
∂(f1, ..., fr)

∂(x1, ..., xn)

Proof of these statements are given in [7].

3. Main results

Let Ω be a bounded closed domain in n-dimensional spaceRn, n > 1, R is a set of real

numbers. Let’s assume that in Ω, r dimensional surface is defined by the system of equations

fj(x̄) = 0, j = 1, ..., n− r, 0 ≤ r ≤ n, (1)
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with differentiable functions on the left side, and the Jacobi matrix

J = J(x̄) =

(
∂fj
∂xi

)
, i = 1, ..., n; j = 1, ...n− r,

has, everywhere in Ω, the maximum rank.

Let further, A0 = A0(x̄) be other matrix function written down in a view

A0 = A0(x̄) = ∥fij(x̄)∥ , 1 ≤ i ≤ r, 1 ≤ j ≤ m,

with differentiable entries. Writing entries of columns of the matrix A0 at a line

f11(x̄), ..., fr1(x̄), f12(x̄), ..., fr2(x̄), ..., f1m(x̄), ..., frm(x̄),

take transposed Jacobi matrix of this system of functions, designating it as A1 = A′
0(x̄):

A1 = A1 = A′
0(x̄) = (x̄) =

∥∥∥∥∥∥∥
∂f11
∂x1

· · · ∂fr1
∂x1

· · · ∂f1m
∂x1

· · · ∂frm
∂x1

· · · · · · · · · · · · · · · · · · · · ·
∂f11
∂xn

· · · ∂fr1
∂xn

· · · ∂f1m
∂xn

· · · ∂frm
∂xn

∥∥∥∥∥∥∥ .
Then, entries of columns of this matrix, as above, arranged in a line, and taking the transposed

Jacobi Matrix A2 = A2(x̄) = A′
1(x̄) of the received system of functions, and we will continue

this procedure while does not receive a matrix Ak(x̄) = A′
k−1(x̄) for this k ≥ 1. The matrix

defined by such way consists of all partial derivatives of one and the same order k of entries

of the matrix A0 = A0(x̄) and has the size n × nk−1rm. Let’s assume that Aj(x̄) has in Ω a

maximal rank being equal to n. Let’s designate by Gj(x̄) the product of the last (smallest) r

singular numbers of the matrix Aj(x̄), j = 0, ..., k. We put

E = E(H) = {x̄ ∈ Ω|G0(x̄) ≤ H},H > 0.

If ϕik(x̄) denotes entries of the matrix Aj(x̄), we will accept the following designations

Lj(x̄) =

∑
i,k

|ϕik|2
1/2

,

L = max
j

max
x̄∈Ω

Lj(x̄), Gj = Gj(x̄).

Below we will prove the theorem, allowing to estimate an area of E in terms of singular

numbers of the matrix A1.

For the formulation and proof of our statements we need to dissect the domain Ω into such

parts in each of which the system (1) allows a one-valued solvability. These parts are defined by

the maximal minors of the matrix J of the system. Let’s dissect Ω into no more than t = Cn−r
n

sub domains Ων intersecting each with another, at most, by parts of boundaries only. In each of

these subdomains one of the minors of the Jacobi matrix has the maximum of modulus among

all minors. We assume that each subdomain Ων is a closed set, and can be represented as a

union of finite number of simply connected closed domains, as a set of solutions of a system of

inequalities in Ω. Therefore, each subdomain Ων is represented in the form Ων =
∪

c≤T0
Ω(ν, c),

where Ω(ν, c) is a simply connected subdomain.

Let’s consider one of subdomains Ω(ν, c). From our assumption it follows that in any neigh-

bourhood of a given solution of the system (1) the system allows one-valued solubility with

respect to one and the same variables. So, the domain Ω(ν, c) can be dissected into no more

than f subdomains ∆µ, µ = 1, ..., f, f ≤ F , in each of which the system (1) allows one-valued

solvability with respect to n − r variables. Let ξ̄ = (ξ1, ..., ξr) be a vector composed of inde-

pendent variables. Then, it is possible to present each variable xi as a function xi = xi(ξ̄)
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of independent variables. Let’s designate A0(ξ̄) the matrix received by replacing in the ma-

trix A0(x̄) independent variables xi by the functions xi = xi(ξ̄). So, we consider the Matrix

function A0 as a matrix of ξ̄. Let’s designate G(1) the minimal value of Gram determinant of

gradients of the entries of the matrix A0(ξ̄) (here the differentiation is taken with respect to ξ̄,

i.e. G(1) = min det
(
A1ξ̄ · tA1ξ̄

)
(we will notice that the minimum is taken over all c and ν and,

therefore, depends on ξ̄ ). So, the matrix A1ξ̄ is a matrix of the size r × rm received from A0

by differentiation with respect to ξ̄, i. e. A1ξ̄ = A′
0(ξ̄). Thus, the matrix being considered as a

matrix of ξ̄ differs from A1ξ̄. Further, for the positive number a we designate h(a) = a + a−1.

It is obvious that a ≤ h(a), h(a−1) = h(a) and h(ab) ≤ h(a)h(b), for a, b > 0.

Theorem 3.1. Let ΠH be the part of the surface (1) included in E(H) and G(1) > 0. Suppose

that the Jacobi matrix of the system of entries of some column of A0 sets up a minor of A1

with maximal modulus. Then for the n− r-dimensional volume (briefly area) µ(ΠH) we have an

estimation

µ (ΠH) ≤ FT0 · 2r+3r3rc20

(
nr

r

)1/2(
n

r

)3/2

H ·G−1
(1) · ℘̃

r,

℘̃ = r2 log
{
h
(
G(1)

)
h (H)h (L)

}
, c0 = π−r/2Γ (1 + r/2) .

Proof. µ (ΠH) it is possible to present as a following surface integral

µ (ΠH) =

∫
Π∩E(H)

ds,

where Π designates the surface of solutions of the system (1). Let among the parts ∆µ, µ =

1, ..., t, t ≤ F of the surface Π the part ∆1 be the maximal area and

J1 =
D(f1, ...fn−r)

D(xn−r+1, ..., xn)
,

designates the corresponding maximal minor. Let Π0 be the area of the part ∆1. Then, we

receive the following estimation

µ (ΠH) ≤ FΠ0.

Now estimate Π0.

Π0 ≤
∫
Π′

1

√
ΣJ2

i

|J1|
dξ1...dξr

≤ (Cr
n)

1/2
∫
Π′

1

dξ1...dξr, (2)

where Π′
1 denotes a domain of changing independent variables ξ1, ..., ξr parameterizing the part

Π′
1. It is well-known that (see [11, p.74]) G =

∑
1≤j≤l

(Mj)
2, where Mj , 1 ≤ j ≤ l denotes modules

of different minors of the Jacobi matrix of a maximal rank. The number of these minors is equal

to l = Cr
n. Then from this equality we have:

| detD0|2 ≤ det
(
A0 · tA0

)
≤ H2,

and D0 means the submatrix of A0 containing such entries gradient columns of which coincides

with one of minors having maximal absolute values (i. e. with the minor J1). Therefore,
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according to the assumption

|detJ1|2 ≥ (Cr
nr)

−1 det
(
A1 · tA1

)
≥ (Cr

nr)
−1 (G(1)

)2
. (3)

Then, the integral on the right part (2) does not exceed:∫
Π′

1,|detD0|≤H

dξ1 · · · dξr ≤
∞∑
j=1

Ej ,

where

Ej =

∫
2−jH≤|detD0|≤2j−1H

dξ1 · · · dξr.

Let ρ1 = ρ1(ξ̄), ..., ρr = ρr(ξ̄) where ξ̄ = (ξ1, ..., ξr), be the singular numbers of a matrix D0

ρ1 ≤ · · · ≤ ρr. Then, from the inequality

2−jH ≤ ρ1 · · · ρr ≤ ρrρ
r−1
1 ,

we deduce

ρr ≥ 2−jρ1−r
1 H,

Writing D0 = (dij) we have:

ρ21 ≤ ρ21 + · · ·+ ρ2r ≤
∑
i,j

d2ij ≤ L2.

In accordance with Shur’s lemma [4, p.288]. Therefore,

ρr ≥ 2−jHL1−r. (4)

Let’s estimate now Ej , j = 1, 2, .... We have:

Ej

21−jH
≤

∫
2−jH≤|detD0|≤2j−1H

dξ̄

|detD0|

≤ c0

∫
2−jH≤| detD0|≤2j−1H

dξ̄

∫
∥D0ᾱ∥≤1

dᾱ), (5)

where c0 = π−r/2Γ(1 + r/2). Further, from an inequality

1 ≥∥ D0ᾱ ∥2= (tD0 ·D0ᾱ, ᾱ)

≥ ρ2r ∥ ᾱ) ∥2≥ ρ2r|αi|2; ∥ ᾱ ∥2=
r∑

i=1

|αi|2, (6)

for all i due to (4), we get the following bound

|αi| ≤

(
r∑

i=1

)1/2

≤ ρ−1
r ≤ 2jH−1Lr−1, (7)

for the variables in internal integral in (5). Let’s enter into consideration a ball:

K = {ᾱ| ∥ ᾱ ∥≤ 2jH−1Lr−1.} (8)

The relation (5) it is possible to represent (designating the domain defined by the condition

2−jH ≤ |detD0| ≤ H1−jH as τ) as follows:

Ej

21−jH
≤ c0

∫
τ

dξ̄

∫
K,∥D0ᾱ∥≤1

dᾱ = c0

∫
ᾱ∈K

dᾱ

∫
ξ̄∈τ,∥D0ᾱ∥≤1

dξ̄. (9)
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Remove from the ball K all of strips Km(m = 1, ..., r) defined by conditions

|αm| ≤
(
G(1)

)−1
r−12j(1−r)HrL−(1−r)2 , (10)

|αi| ≤ 2jH−1Lr−1, i ̸= m. (11)

Let’s designate K0 =
∪r

m=1Km and estimate the measure K0 trivially:

µ(K0) ≤ c0H
(
G(1)

)−1
. (12)

On the right part of (9), we will dissect the multiple integral into two integrals. The first it

ems will be determined by the condition ᾱ ∈ K0, and the second by the condition ᾱ ∈ K\K0.

Estimate the first integral trivially using the found estimation:∫
ᾱ∈K0

dᾱ

∫
ξ̄∈τ,∥D0ᾱ∥≤1

dξ̄ ≤ c0HG−1
(1) (13)

To estimate the integral overK\K0 in the inner integral we will apply an exchange of variables.

For any fixed ᾱ ∈ K\K0, we put

η̄ = D0(ξ̄′)ᾱ.

Formally, the Jacobi matrix of this exchange of variables is equal to the inverse of the matrix

J =
∂(η1, ..., ηr)

∂(ξ1, ..., ξr)
=

(
∂D0

∂ξ1
ᾱ · · · ∂D0

∂ξr
ᾱ

)
and ∂(tD0)/∂ξj designates a matrix received by differentiation of all entries of the matrix D0 =

D0(ξ̄) with respect to the variable ξj :∫
ᾱ∈K\K0

dᾱ

∫
ξ̄∈τ,∥D0ᾱ∥≤1

dξ̄ =

∫
ᾱ∈K\K0

dᾱ

∫
ξ̄∈τ,∥η∥≤1

|J |−1dη̄.(∗)

For every η we will designate by τ(η̄) a subset in K\K0 all of points with the constraint ∥
D0(ξ̄)α ∥≤ 1. Changing orders of integrations in the last integral, we receive an inequality:∫

ᾱ∈K\K0

dᾱ

∫
ξ̄∈τ,∥D0ᾱ∥≤1

dξ̄ ≤
∫

∥η∥≤1

dη̄

∫
τ(η̄)

|J |−1dᾱ,

extending the integration to all of the specified η. We need the proof of the relation (*). At first

we note that the left hand side of the equality is finite. It is clear that the set of solutions of the

equation |J | = 0 is closed Jordan set in (K\K0) × τ . Suppose that such a Jordan set contains

an open set V . Then, for every point (ᾱ, ξ̄′) ∈ V, ᾱ ∈ K\K0, ξ̄
′ ∈ τ there will be found such a

neighborhoods of the points ᾱ ∈ V ′, ξ̄′ ∈ τ ′ that V ′× τ ′ ⊂ (K\K0)× τ . Since the set of solution

is a Jordan set, to prove our statement it is enough to establish that the set of points where

|J | = 0 can’t contain points ᾱ ∈ K\K0 with its open neighborhood for all points ξ̄′ ∈ τ with

add a comma their subset of zero Jordan measure. For establishing the last conclusion note that

the matrix tJ could be written as

tJ =

 tᾱ · ∂tD0
∂ξ1

· · ·
tᾱ · ∂tD0

∂ξr

 .

Suppose now, in contrary, that the set of solutions of the equation |J | = 0 contains an open

subset in K\K0. Then we can differentiate an identity |J | = 0 in this open set with respect to

the components of the vector ᾱ. Differentiating the determinant with respect to the variable αj

we get a sum of j! determinants, which are equal one to another. Each of these determinants is
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a Jacobian of the system of functions of j-th row of the matrix D0 = D0(ξ̄). We have received

a contradiction in consent with conditions of the theorem. So, our supposition is not true.

Therefore the equality |J | = 0 is not satisfied in an open subset in K\K0 for each point ξ̄′ ∈ τ ,

except of the points of a set of zero Jordan measure. Since the set of points in (K\K0)× τ with

the condition |J | = 0 has zero Jordan measure, then we can overlap this set by a union of open

cubes with arbitrarily small total measures. The left side of the equality (*) being taken over

such a covering also is small. We must prove uniform estimation for closed complement of such

covering, non-dependent of it, then we have proven (*) using an improper meaning.

Now we pass to the estimation of the integral on the right side of the equality (*). For every η̄

denoted by τ (η̄) the subset inK\K0 for all points of which the inequality
∥∥tD0ᾱ

∥∥ ≤ 1 is satisfied.

Consider the matrix tJ as a matrix of linear map which puts in correspondence to every vector

β̄ ∈ Rr a vector tJβ̄. This map is bilinear which we write as a map Φ :
(
ᾱ, β̄

)
7→ tJβ̄. For

every point
(
ᾱ, β̄

)
∈ R2r the equality Φ

(
ᾱ, β̄

)
= D1(ᾱ ⊗ β̄) is satisfied, where for the vectors

tᾱ = (α1, ..., αr) and
tβ̄ = (β1, ..., βr) the symbol t(ᾱ⊗β̄) will denote a direct (Cartesian) product

(α1β1, ..., α1βr, ..., αrβ1, ..., αrβr). Writing |J |−1 as an integral as above, from (*) we get:∫
∥η̄∥≤1

dη̄

∫
τ(η̄)

|J |−1 dᾱ = c0

∫
∥η̄∥≤1

dη̄

∫
τ(η̄)

dᾱ

∫
∥D1(ᾱ⊗β̄)∥≤1

dβ̄. (14)

Consider now an inner multiple integral over ᾱ and β̄:∫
τ(η̄),∥D1(ᾱ⊗β̄)∥≤1

dᾱdβ̄. (15)

Let the singular value decomposition of the matrix D1 has a view D1 = QΣT , where Q and

T are orthogonal matrices of orders, correspondingly, r, r2 and Σ is a block matrix of a view

(Σ1,Σ2), with diagonal matrix Σ1 with diagonal entries composed of singular numbers σ1, ..., σr
of the matrix D1, and zero matrix Σ2. Note that columns of the matrix D1 can be placed in

Σ with any order in consent with replacement of columns of the matrices T and Q. Consider

the integral (15) and make an exchange of variables ti = αiβi, i = 1, ..., r. Before application

of the Lemma 1 we conduct the following reasoning. From the made exchange of variables we

find: βi = tiα
−1
i , which we write conditionally as β̄ = t̄ᾱ−1. Then we have

D1(ᾱ⊗ β̄) = D1

(
ᾱ⊗ t̄ᾱ−1

)
.

Counting the inequalities (10-11), for all points from K\K0, and all i the following inequalities

are satisfied (
G(1)

)−1
r−12j(1−r)HrL−(1−r)2 ≤ αi ≤ 2jH−1Lr−1. (16)

Under conditions of the theorem 1 we have G1(ξ̄
′) ≥ G(1). Now we apply the lemma 2 performing

exchange of variables: ∫
τ(η̄)

dᾱ

∫
∥D1(ᾱ⊗t̄ᾱ−1)∥

dβ̄

=

∫
d

t̄

∫
ti=αiβi,∥D1(tβ̄−1⊗β̄)∥

ds√
α2
1 + β2

1 · · ·
√

α2
r + β2

r

. (17)

Transforming the surface integral into the multiple integral we get:∫
ti=αiβi,∥D1(tβ̄−1⊗β̄)∥

ds√
α2
1 + β2

1 · · ·
√

α2
r + β2

r

≤
∫

dα1 · · · dαr

α1 · · ·αr
,
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recalling that the bounds of variation of the variables αi are defined by the inequalities (16). To

estimate from above the multiple integrals on the right hand side of (17) we change the order

of integration: ∫
dα1 · · · dαr

α1 · · ·αr

∫
∥D1(ᾱ⊗t̄ᾱ−1)∥≤1

dt1 · · · dtr.

Consider now in Rr2 a manifold of dimension 2r :

t11 = α1β1, ..., t1,r = α1βr, ..., tr,1 = αrβ1, ..., trr = αrβr.

Inner integral in the last multiple integral can be represented as a surface integral over the

considered line manifold ᾱ ⊗ t̄ᾱ−1 in Rr2 of dimension r. The r dimensional element of the

volume can be represented as ∣∣U · tU
∣∣ dt1 · · · dtr,

where

tU =

 1 0 · · · 0 α2α
−1
1 0 · · · 0 · · ·

0 α1α
−1
2 · · · 0 0 1 · · · 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

 .

So, we have ∫
∥D1(ᾱ⊗t̄ᾱ−1)∥≤1

dt1 · · · dtr =
∫

∥D1x̄∥≤1

ds

|U · tU |
,

where the surface integral is taken over the part of the surface ᾱ⊗ t̄ᾱ−1, satisfying the conditions

given under the symbol of integration. The matrix U contains a unitary sub matrix, and by this

reason we have
∣∣U · tU

∣∣ ≥ 1. In accordance with the Hadamard’s inequality ([3, p. 154], [11])

we have the bound
∣∣U · tU

∣∣ ≤ 22j(r−1)r2H−2rλ2rG2
1 = Y . Make the linear transformation over

the line manifold ᾱ⊗ t̄ᾱ−1, acting to it by the matrix T from the singular value decomposition

for the matrix D1. Since T is an orthogonal matrix after the transformation ū = T x̄ view of the

integral will not be changed. So, taking into account the above estimations we will have:

Y −1

∫
∥Σū∥≤1

dσ ≤
∫

∥D1(ᾱ⊗t̄ᾱ−1)∥≤1

dt1 · · · dtr =
∫

∥D1x̄∥≤1

ds

|U · tU |
≤

∫
∥Σū∥≤1

dσ,

where dσ means an element of the surface on the surface ū = T (ᾱ ⊗ t̄ᾱ−1) (these estimations

show that the surface integrals with respect ds and dσ converge or diverge simultaneously).

If this manifold has a dimension less than r then as a result of excess of variables, the surface

integral diverges, i.e. |J | = 0. But this equality can be satisfied only on the set of points ξ̄′ which

set up a subset of zero measure. So, we can assume that the considered linear manifold has a

dimension r. Denote the first r components of the vector ū by u1, ..., ur. If the sub manifold

generated by these variables has a dimension less r then we have the same situation considered

above. So, we can assume that all of variables are independent and by this reason we must have:∫
∥Σū∥

dσ =

∫
σ1u2

1+···+σru2
r≤1

dū = c′σ−1
1 · · ·σ−1

r = c′ det(D1 · tD1)
−1/2 = c′δ−1. (18)

(see [4, p.148]) (c′ is a constant). Performing inverse transformation we find T−1ū = ᾱ⊗ t̄ᾱ−1.

Taking into account the bounds (16) of variation of variables, and integrating with respect to
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αj under the integral we get:

2jH−1Lr−1tj∫
(G(1))

−1
r−12j(1−r)HrL−(1−r)2 tj

dαi

αi
= log(rG(1)2

jrH−r−1Lr(r−1)).

From the told above we conclude:∫
∥η∥≤1

dη̄

∫
τ(η̄)

dᾱ

∫
∥D1(ᾱ⊗β̄)∥≤1

dβ̄ ≤ c0δ
−1
1 ℘r

j , (19)

where ℘j = 1 + log(rG(1)2
jrH−r−1Lr(r−1)). Therefore, using the estimation (9), we get the

following bound for the integral over K\K0 on the right hand side of the equation (8):∫
ᾱ∈K\K0

dᾱ

∫
ξ̄′∈τ,∥tD0ᾱ∥≤1

dξ̄′ ≤ c20H

 ∞∑
j=1

℘r
j2

1−j

 δ−1
1 .

Designating X = rG(1)H
−r−1Lr(r−1) we consider the following sum:

∞∑
j=1

℘r
j2

1−j = 2

∞∑
j=1

[1 + rj log 2 + logX]r2−j .

For estimation of this sum we notice that if 1 + logX > 2r2 then the function

exp r log(1 + rj log 2 + logX)− 0.5j log 2.

monotonously decreases with respect to j. When 1+ logX ≤ 2r2 this function has the maximal

value ≤ 2rr2r. Therefore,∑
j≥0

[1 + rj log 2 + logX]r2−j/22−j/2 ≤ 2
(
1 + r2 + log

(
rG(1)H

−r−1Lr(r−2)
))r

.

So, ∫
Π′

1,|detD0|≤H

dξ1 · · · dξr ≤ 2r+3r3rc20 (C
r
n)

1/2Hδ−1
1 ℘r. (20)

℘ = 1 + r2 + log
(
rG(1)H

−r−1Lr(r−1)
)
.

Then,

δ21 ≥ (Cr
m)−1G1(ξ̄); (21)

G1(ξ̄) = det
(
A1(ξ̄) · tA1(ξ̄)

)
.

Therefore, ∫
Π′

1,|detD0|≤H

dξ1 · · · dξr ≤ 2r+3r3rc20

(
n

r

)1/2(
rn

r

)1/2

HG−1
(1)℘

r,

thus,

℘ = 1 + r2 + log
(
rG(1)H

−r−1Lr(r−1)
)
≤ 1 + r2 + log r + log{h(G(0))h(H)r−1h(L)r

2}

For r ≥ 2 we have h(a) ≥ 2. So,

r2 log
(
h(G(1))h(H)h(L)

)
≥ 3r2 + log{h(G(0))h(H)r−1h(L)r

2}.

The theorem 1 is proved. �



98 TWMS J. PURE APPL. MATH., V.11, N.1, 2020

Corollary 3.1. Let the conditions of the theorem satisfied. Then there exists a constant C

such that

µ (ΠH) ≤ CHG−1
1 · ℘r,

where

℘ = r2 log {h (G1)h (H)h (L)} .

Proof. It is sufficient to prove that G(1) ≥ G1. For any point x̄(ξ̄) on the surface we have

det
(
A1ξ̄ · tA1ξ̄

)−1/2
=

= c0

∫
∥tA1ξ̄ū∥≤1

dū = c′0

∫
∥tA1x̄∥≤1

ds,

where the surface integral is taken over tangential space to the surface at the point x̄(ξ̄). Con-

sidering the tangential space as a subspace of dimension r of the space Rn take the maximal

value over all r-dimensional subspaces (see [4, p.148]). This maximal value is equal to G−1
1 . The

proof of the corollary is finished. �

4. Conclusions

The question on estimation of areas in multidimensional domains arises in various branches

of the mathematics. There are different ways for the solution of the problem in different cases.

The method developed in this paper allows us to reduce the question to the investigation of

operators defined by matrices given on tangential spaces on manifolds. In many questions such

a reduction simplifies the estimation by using operators with a discrete spectrum.
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